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We investigate the scalability, architectural requirements, and performance characteristics of eight scalable 
scientific applications. Our analysis is driven by empirical measurements using statistical and tracing 
instrumentation for both communication and computation. Based on these measurements, we refine our 
analysis into precise explanations of the factors that influence performance and scalability for each 
application; we distill these factors into common traits and overall recommendations for both users and 
designers of scalable platforms. Our experiments demonstrate that some traits, such as improvements in the 
scaling and performance of MPI's collective operations, will benefit most applications. We also find specific 
characteristics of some applications that limit performance. For example, one application's intensive use of a 
64-bit, floating-point divide instruction, which has high latency and is not pipelined on the POWER3, limits 
the performance of the application's primary computation. 

1 Introduction 
Although programming models and languages appear to be converging, the 

computational workloads and communication patterns for scientific applications vary 
dramatically, depending, in part, on the nature of the problem the applications are 
solving. In this paper, we investigate the scalability, architectural requirements, and 
inherent behavioral characteristics of eight scalable scientific applications. These 
applications are truly scalable: All of these applications scale to thousands of processors 
while several have executed on platforms using as many as 8,000 processors. All of these 
applications use a coarse-grained, distributed memory model.  

We provide a comparative analysis of these applications and isolate their 
performance characteristics using empirical measurements. Initially, we examine the 
overall scalability of each application. Then, based on these results, we iteratively 
investigate the primary factors that affect scalability and performance using a 
combination of measurement techniques, such as message tracing and monitoring 
hardware counters, until we can understand each application's primary performance 
properties and the root causes of those properties. Based on these measurements, we 
refine our analysis into precise explanations of the factors that influence performance and 
scalability for each application; we distill these factors into common traits and overall 
recommendations for both users and designers of scalable platforms. 

Though diverse, the computation and communication requirements for these 
applications play a critical role in the design of next-generation architectures and 
software. Although our experiments demonstrate that some traits, such as improvements 
in the scaling and performance of Message Passing Interface's (MPI) collective 
operations, will benefit most applications, we also find specific characteristics of some 
applications that limit performance. For example, UMT's intensive use of a 64-bit, 
floating-point divide instruction, which has high latency and is not pipelined, limits the 
performance of UMT's primary computation. 
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2 Applications 
For our investigation, we targeted eight sophisticated scientific applications, as 

shown in Table 1. All of our applications use MPI [15, 25] for coarse-grained distributed 
memory concurrency. Although MPI provides a common foundation for explicit 
communication, its wide range of functionality supports a diverse set of application 
communication characteristics due to variations in application domain, algorithm, 
software design, and problem size [28]. The MPI specification is implemented as a 
collection of library routines and a runtime system. In addition to MPI, all of these 
applications can exploit OpenMP [9] for shared memory concurrency; however, this 
investigation does not examine the OpenMP characteristics of these applications. 
OpenMP is implemented as a set of compiler directives or pragmas that instruct an 
OpenMP-compliant compiler to generate constructs for threads-based parallelism. In 
practice, all of our scalable scientific applications are portable and they target only MPI 
and OpenMP; they do not require particular features from the underlying architecture, 
such as a specific processor or interconnect. This model is a good fit with current parallel 
computer architectures: clusters of shared memory compute nodes [10, 22]. Application 
developers focus on these two standards for three interrelated reasons: portability over 
architectures, compatibility with software tools, and performance. Although application 
performance is occasionally at odds with these first two goals, many applications benefit 
from the community attention directed on making these standards efficient.  

Application Description Language 
SPPM 3-D gas dynamics problem on a uniform Cartesian mesh F77 
SMG2000 Parallel semicoarsening multigrid solver C 
SPHOT 2-D Photon transport code F77 
IRS Implicit radiation solver C 
MDCASK Molecular dynamics code to study radiation damage in metals F77 
UMT 3-D, deterministic, multigroup, photon transport code for 

unstructured meshes 
C/ F90 

AZTEC Parallel iterative library for solving linear systems C/ F77 
SWEEP3D Solver for the 3-D, time-independent, particle transport 

equation 
F77 

Table 1: Summary of Applications. 

The language for the application, as shown in Table 1, represents the primary 
languages used in the source code, although most of these complex applications are 
mixed language. Four of our applications use FORTRAN 77 (F77) or FORTRAN 90 
(F90). Two applications use C. Two other applications use a combination of both 
languages. None of these applications uses assembly instructions. 

Description summarizes the specific domain the application targets. The respective 
references and Section 2.1 provide more detail on each application. Additionally, the 
application source code is available from the ASCI Purple website 
(http://www.llnl.gov/asci/platforms) with the exception of Sweep3D, which is 
available from the ASCI Blue website (http://www.llnl.gov/asci_benchmarks).  

All of these applications accept a range of input problem sizes. These input problems 
allow users to change many aspects of the application and, consequently, their 
communication and computation behavior [28]. For these experiments, we used input 
problems that were representative of normal execution. 
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2.1 Descriptions 

2.1.1 sPPM 
sPPM [21] solves a 3-D gas dynamics problem on a uniform Cartesian mesh, using a 

simplified version of the Piecewise Parabolic Method. The algorithm makes use of a split 
scheme of X, Y, and Z Lagrangian and remap steps, which are computed as three 
separate sweeps through the mesh per timestep. Message passing provides updates to 
ghost cells from neighboring domains three times per timestep. 

2.1.2 SMG2000 
SMG2000 [5] is a parallel semicoarsening multigrid solver for the linear systems 

arising from finite difference, finite volume, or finite element discretizations of the 
diffusion equation fuuD =+∇⋅∇ σ)( on logically rectangular grids. The code solves 
both 2-D and 3-D problems with discretization stencils of up to 9-points in 2-D and up to 
27-points in 3-D. Applications where such a solver is needed include radiation diffusion 
and flow in porous media. Our examination includes both the setup of the linear system 
and the solve itself. Note that this setup phase can often be done just once, thus 
amortizing the cost of the setup phase over many timesteps. This trait is relatively 
common in implicit timestepping codes. 

2.1.3 SPHOT 
Sphot is a 2-D photon transport code. Photons are born in hot matter and tracked 

through a spherical domain that is cylindrically symmetric on a logically rectilinear, 2-D 
mesh. Monte Carlo transport solves the Boltzmann transport equation by directly 
mimicking the behavior of photons as they are born in hot matter, move through and 
scatter in different materials, and are absorbed or escape from the problem domain. 
Particles are born with an energy and direction that are determined by using random 
numbers to sample from appropriate distributions. This code tracks particles through a 
logically rectangular, 2-D mesh that is internally generated.  

2.1.4 IRS 
IRS [3] is an implicit radiation solver code that solves the radiation transport equation 

by the flux-limited diffusion approximation using an implicit matrix solution. IRS uses 
the preconditioned conjugate gradient method (PCCG) for inverting a matrix equation. In 
the algorithm, a planar radiation wave diffuses through a regular rectangular mesh from 
one end to another. The problems execute for longer than it takes to traverse the spatial 
problem. This forces the radiation iteration count to increase dramatically and is more 
stressful on certain aspects of parallel communications.  

2.1.5 MDCASK 
MDCASK [2] is a molecular dynamics code to study radiation damage in metals. The 

basic features of the code include an algorithm for integration of the equations of motion, 
an interatomic potential, and boundary conditions and constraints. The algorithm first 
defines the original position of the atoms in the lattice, calculates the energy and the 
forces on each atom using interatomic potential, and integrates the equations of motion to 
obtain the next values of positions and velocities. The equations of motion are integrated 
using a fourth-order predictor corrector algorithm [4]. The link cell method [1] is used to 
calculate the neighbors of each atom.            
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2.1.6 UMT 
UMT is a 3-D, deterministic, multigroup, photon transport code for unstructured 

meshes. The algorithm solves the first-order form of the steady-state Boltzmann transport 
equation. The equation's energy dependence is modeled using multiple photon energy 
groups, and the angular dependence is modeled using a collocation of discrete directions. 
The spatial variable is modeled with an upstream corner balance finite volume 
differencing technique. The solution proceeds by tracking through the mesh in the 
direction of each ordinate. For each ordinate direction all energy groups are transported, 
accumulating the desired solution on each zone in the mesh. The code works on 
unstructured meshes, which it generates at run-time using a two-dimensional unstructured 
mesh and extruding it in the third dimension using a user-specified amount.  

2.1.7 Aztec 
Aztec [26] is a parallel iterative library for solving linear systems. Simplicity is 

attained using the notion of a global distributed matrix. The global distributed matrix 
allows a user to specify the application matrix exactly as he/she would in the serial 
setting. Issues such as local numbering, ghost variables, and messages are ignored by the 
user and are instead computed by an automated transformation function. Techniques such 
as standard distributed memory methods, locally numbered submatrices, and ghost 
variables are used to make the code efficient. In addition, Aztec takes advantage of 
advanced partitioning techniques and utilizes efficient dense matrix algorithms when 
solving block sparse matrices.  

2.1.8 Sweep3D 
Sweep3D [17, 19] is a solver for the 3-D, time-independent, particle transport equation 

on an orthogonal mesh; it uses a multidimensional wavefront algorithm for "discrete 
ordinates" deterministic particle transport simulation. Sweep3D benefits from multiple 
wavefronts in multiple dimensions, which are partitioned and pipelined on a distributed 
memory system. The three-dimensional space is decomposed onto a two-dimensional 
orthogonal mesh, where each processor is assigned one columnar domain. Sweep3D 
exchanges messages between processors as wavefronts propagate diagonally across this 
3-D space in eight directions. 

3 Methodology 
Our methodology is to investigate iteratively over increasingly refined empirical data 

for each application. At the highest level, we measure overall performance and 
scalability, and then, based on this analysis, we focus our efforts on those characteristics 
that influence scalability and performance. We do this by empirically measuring the 
application's communication and computation activity during execution using a collection 
of statistical and tracing instrumentation. 

For communication, we record MPI statistics and trace MPI operations, if necessary. 
For computation, we use subroutine profiling and hardware counters on the 
microprocessor to capture specific data about important blocks of computation. Most of 
these strategies must be used very carefully to allow us to collect relevant and accurate 
information, yet limit both perturbation on the application and performance data 
generation.  
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3.1 Measuring Computation Performance 
Single node computation performance is a relatively well-understood and 

straightforward area provided that proper tools exist to capture interesting performance 
information. For instance, subroutine profilers must account for multiple threads of 
execution and attribute information appropriately. For this work, we use subroutine 
profiling and microprocessor performance counters to gather empirical data about 
application computation.  

To identify subroutines that consume relatively large amounts of wall-clock time, we 
use traditional subroutine profiling [14], which has been extended to work properly with 
MPI applications. In some situations, we also capture a trace of subroutine calls, using 
tools such as VGV [16], and we then tally this information to present a hierarchical 
decomposition of execution time. 

To capture information about processor instructions and memory activity, we rely on 
eight hardware counters in the IBM POWER3 processor. These counters offer a wide 
assortment of metrics, and we program them to count events of interest to our study [6]. 
Typically, we capture the number of cycles, number of completed instructions, number of 
floating-point operations, cache misses, and number of memory loads and stores. We are 
particularly interested in these metrics because from them we can easily compute the 
instructions per cycle, computational intensity, cache hit ratios, and the number of 
floating point operations, which are typically less sensitive to compiler optimization than 
other instructions.  

3.2 Measuring Communication Performance 
All of our applications spend time communicating among their tasks using point-to-

point and collective communication routines provided by MPI. The amount of time the 
applications spend in these routines is a good indicator of how much time the application 
spends communicating rather than computing. A significant number of the MPI routines, 
such as those used for managing derived types, are task local and do not communicate or 
synchronize with other tasks, so we do not examine their contribution to the overall time 
separately. 

MPI statistics provide a scalable, lightweight overview of the application's 
communication activity [27]. Our statistical tool, named MPIP (MPI Profiler), uses the 
MPI profiling layer to wrap significant MPI communication routines in timers. These 
timers record wall-clock time and record the elapsed time of every call to a hash table. 
The wrapper also records a call site stacktrace (of configurable depth) for each MPI call, 
and it uses this information to index into the hash table. With this stacktrace, we can 
easily identify different phases of computation and different MPI call sites. Many task-
local MPI routines are not profiled. MPIP also allows users to measure only phases of 
their application by enabling and disabling MPIP as their application executes. MPIP has 
the advantages that it has small perturbation and limited storage requirements, which, in 
turn, make it relatively accurate and scalable. 

Beyond MPI statistics, more complex performance phenomena, such as load 
imbalance and the interactions between communication and computation, often demand 
MPI tracing. MPI tracing provides a chronological event stream of the subroutine calls to 
the MPI library for each individual MPI task in the application. The events usually 
include the parameters passed to the subroutine, a timestamp, and the duration of the 
subroutine. This instrumentation usually highlights message transfers and collective 
operations too. During execution, the tracer records events to a local memory buffer. 
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When this memory buffer is filled, the tracer writes this information to a file stored on the 
node's local disk. At the end of application execution, the tracer collects these events 
from each node and merges them into one trace file. We then analyzed the trace files 
offline. Most trace-based performance analysis systems, including PICL [13], Pablo [23], 
Tau [24], VGV [16], and Paraver [8], use this approach.  

Two problems accompany the advantages of tracing. First, tracing can easily create 
an intractable amount of information, even for relatively small experiments. Second, as 
the tracer captures and manages all this information during execution, the tracer can 
introduce perturbation into the target application. With these issues in mind, we must use 
tracing carefully to focus on the phenomena under investigation. With our iterative 
approach, we first identify the performance bound areas in the code with a statistical 
overview, and then we restrict analysis to those areas so that we can minimize 
perturbation due to instrumentation and data collection. 

4 Evaluation 
This evaluation focuses on the overall scalability and performance of each 

application. Then, based on these results, we iteratively investigate the factors limiting 
scalability and performance using a combination of our measurement techniques, making 
the appropriate tradeoffs of detail versus perturbation for each application. 

4.1 Platform  
We ran our tests on an IBM SP system, located at Lawrence Livermore National 

Laboratory. It is composed of 68 IBM RS/6000 NightHawk-2 16-way SMP nodes using 
375 MHz IBM 64-bit POWER3-II CPUs [29]. The system has a peak performance rating 
of 1.6 TeraOps, 1088 GB of global memory, and 20.6 TB of global disk.  At the time of 
our tests, the batch partition had 63 nodes and the operating system was AIX 5.1. We 
compiled the various tests with the IBM XL and KAI Guide compilers using IBM's MPI 
library in user-space mode. Our test jobs ran on dedicated nodes, although other jobs 
were concurrently using the network.  

4.1.1 Computational Performance 
The computational capability of the POWER3 processor is a peak execution rate of 

eight instructions per cycle and a sustained rate of four instructions per cycle. Each 
processor has three integer units, two floating-point units, and two load/store units. Its 
design allows for concurrent operation of load/store instructions, floating-point 
instructions, fixed-point instructions, and branch instructions. The processor can 
complete four floating-point operations per cycle by retiring a fused-multiply-add (2 
floating-point operations) in each floating-point unit on every cycle. The 375 MHz IBM 
64-bit POWER3-II, then, has a peak floating point rate of 1,500 MF/s. Each SMP node 
has a peak performance of 24,000 MF/s and a memory size of 16 GB.  

Each node's memory system connects each processor to main memory through a 
crossbar switch. The L1 Data Cache is 64 KB and 128-way set associative. The memory 
hierarchy can prefetch up to four streams of data into L1 cache from L2 cache or 
memory. The L1 Instruction Cache is 32 KB, with a line size of 128 bytes. L2 cache is 8 
MB per processor; the L2 cache has its own bus, so that it can be accessed 
simultaneously with main memory. The memory system performance of these processors 
obtain approximately 5,000 MB/s bandwidth when using data in cache as Figure 1 
illustrates with the cachebench benchmark. 
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Figure 1: Memory System Performance on Cachebench. 

The BLAS routine dgemm, as provided by the highly optimized IBM Engineering and 
Scientific Subroutine Library [18], can exploit this functionality to attain a sustained flop 
rate of 1260 MF/s (84% of the peak rate) on a matrix of order 1,000. This routine obtains 
an empirical computational intensity of 3.9 and an IPC ratio of 2.7. Less than 1.9% of 
processors cycles were stalled waiting for memory accesses; almost all of those accesses 
were waiting on store operations to complete. 
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Figure 3: MPI Message Latency. 
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4.1.2 Communication Performance 
The system interconnect is IBM's SP Switch2 using the Colony double-single 

adapters (two adapters per node, one port per adapter), which provide a node-to-node bi-
directional bandwidth of 2 GB/s. Figure 2 and Figure 3 illustrate both the inter-node and 
intra-node unidirectional bandwidth and latency, respectively, as measured with the 
Pallas MPI PingPong benchmark between two MPI tasks. 

4.2 Overall Performance and Scaling 
Figures 4 through 11 show the scaling behaviors for each application. Some 

application experiments are not easily scaled with the number of processors, so most 
application experiments used strong scaling while three used weak scaling (sPPM, 
SMG2000, Sweep3D). 
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Figure 4: sPPM Weak Scaling. Figure 5: SMG2000 Weak Scaling. 
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Figure 6: Sweep3D Weak Scaling. Figure 7: Sphot Strong Scaling. 
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Figure 8: IRS Strong Scaling. Figure 9: MDCASK Strong Scaling. 
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Figure 10: UMT Strong Scaling. Figure 11: AZTEC Strong Scaling. 

4.3 Applications 

4.3.1 sPPM 
As Figure 12 shows, each MPI task of SPPM has a regimented structure of 

computation followed by communication with six neighbors in the 3D domain; the trace 
shows all three waves of communication due to sweeps through the mesh for the double 
timestep. The scaling behavior of sPPM is quite good; it has demonstrated scalability to 
thousands of tasks [21]. However, as the application scales up, the MPI collective 
MPI_Allreduce begins consuming more time. The aggregate percentage of time consumed 
by calls to this routine grows from 0.1% to 4.2% when the number of tasks increased 
from 2 to 384. Also, all tasks of sPPM exchange their ghost cell update messages at 
approximately the same time, which, depending on the network topology, can lead to 
contention and bandwidth limitations in the network. 

Each of three sweeps through each task's mesh calls the subroutine sppm, in turn, and 
sppm along with three major subroutines that it calls consume approximately 65% of 
computation time on each node. Using hardware counters, we found that the ratio of 
instructions per cycle (IPC) for this code region is approximately 0.87 across all tasks. 
The large majority of the array accesses are unit stride, so these accesses benefit from the 
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POWER3's unit stride hardware prefetching as evidenced by high cache hit rate of 98% 
for L1 and 99.7% for L2. Also, this subroutine has a good computational intensity (ratio 
of floating point operations to number of memory accesses: sum of loads and stores) of 
1.45. 

 

Figure 12: sPPM communication for one double timestep. 

4.3.2 MDCASK 
The domain decomposition used in this program is based on the link cell method [1]. 

The simulation box is divided into smaller cells, each of which has dimensions slightly 
bigger than the cut-off of the interatomic potential. Most communication between nodes 
consists of updating the skin cells after each integration step and sending atoms across 
nodes. Most of the simulation time is spent in computing the forces and energies of each 
atom. MPI collective MPI_Bcast is called several times during this phase of computation. 
Other communication between nodes is performed by point-to-point MPI calls.  

As Figure 9 shows, MDCASK scales well. When a small number of tasks (less than 
16 tasks) are used, the total communication time is less than 4.15% of total execution 
time. However, as the number of tasks grows, this ratio increases. MDCASK spends 
67.7% of its execution time for communication when 256 tasks are used. Further analysis 
on the communication behavior of MDCASK with tracing reveals that each task sends 
moderately sized messages (6 KB) to the next task in communication rank and a large 
number of small messages (less than 256 bytes) to the root task (task 0), as shown in 
Figure 13. In addition, the code executes a fixed number of  MPI_Bcast  operations (3221 
times) and the size of the messages exchanged by this collective is small (152 bytes on 
average). When a large number of tasks are used, the MPI_Bcast collective becomes a 
bottleneck as those tasks wait for the collective to finish broadcasting small messages.  
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Figure 13: Message statistics for MDCASK (average message length). 

4.3.3 SMG2000 
SMG2000 has a very complex communication structure based, in part, on the 

recursive nature of the multigrid V-cycle. Most communication uses point-to-point 
messages with a limited number of calls to MPI_Allreduce. All messaging uses 
nonblocking MPI_Isends and MPI_Irecvs. For this short experiment, MPI_Irecv and 
MPI_Isend are invoked 40,830,584 times each, a tremendous number of messages relative 
to the other applications portrayed here. At 384 tasks, these two routines and the 
matching completion operations account for over 98% of the SMG2000's aggregate time 
in MPI, and almost 75% of the overall application aggregate time. MPI_Allreduce accounts 
for the remaining aggregate communication time of about 2%. 

Although SMG2000 spends the majority of time in communication, compute 
performance is also important because the majority of memory access patterns for 
SMG2000 are not unit stride and they usually rely on indirection. On a 32-task 
experiment, our data shows that SMG2000 spends 34.3 seconds of a 54.3 second 
experiment (63%) in two routines: CyclicReduction and SMGResidual. The instructions per 
cycle for these routines are 0.811 and 0.923; however, the computational intensity is very 
low at 0.056 and 0.099, respectively. This low intensity indicates that the routines have 
considerable memory traffic for each floating-point operation. 

4.3.4 Sweep3D 
As Sweep3D scales up in the number of tasks, so do the communication requirements 

of its wavefront algorithm as shown by Figure 6. In our experiments, at 384 tasks, 
Sweep3D spends approximately 63% of its aggregate time in MPI. Of this time in MPI, 
the MPI_Recv and MPI_Send routines that make up the core of the wavefront algorithm 
account for 50.5% and 42.5%, respectively. 
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The primary computational component of Sweep3D is a loop in the subroutine sweep. 
Our measurements revealed that at 64 tasks, about 45% of the aggregate execution time is 
spent in the jkm loop during one timestep. The loop obtains a computational intensity of 
0.75 for our problem size and the IPC ratio is 1.31. The completion unit is stalled for 
about 10.7% of the cycles waiting on store operations to complete. Our measurements 
indicate that only about 1% of load operations result in a miss in the L1 cache. 

 

Figure 14: One timestep of UMT (75 of 288 tasks shown). 

4.3.5 UMT 
As Figure 10 illustrates, the majority of UMT's time is spent in computation rather 

than communication. At 288 tasks, during one timestep UMT spends about 21% of its 
aggregate time in MPI, of which 17.3% is in the MPI_Barrier operation caused by a slight 
load imbalance in the work distribution. The remaining 79% of time is spent in 
computation. Figure 14 illustrates one such timestep of UMT. On closer examination of 
the computation, we found that almost 71% of one timestep is attributable to one loop in 
procedure snswp3d (labeled ANG_LOOP in Figure 14). This loop updates the elements of 
the unstructured mesh using a series of mathematically intensive computations that 
compute the flux for the transport algorithm. 

Further investigation revealed that the calculations in this loop have a large 
proportion of 64-bit floating-point instructions with a computational intensity of 1.5 and 
an IPC of about 0.74. In fact, our measurements indicate that for this loop, almost 6.1% 
of the instructions are divisions. In the POWER3 architecture, most double-precision 
floating-point operations (including FMAs) have a 3-cycle latency, 1-cycle throughput; 
however, several operations including division and square root have a latency of 18-25 
cycles and they are not pipelined. The memory access characteristics of UMT generate 
about a 3.2% miss rate on load operations in L1. The completion unit is stalled for about 
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4.6% of the cycles waiting on store operations to complete, and about 39% of the cycles 
waiting on load operations.  

4.3.6 Sphot 
Sphot scales very well as Figure 7 shows. Each MPI task computes relatively long 

computations and then communicates its results to the master task. These minimal 
communications occur between the master MPI task and the other MPI tasks for the 
purpose of distributing input data, updating global variables, and collecting statistics. The 
analysis of the MPI performance of a 384-task experiment using MPI profiler indicates 
that the application spends 12% of its time in MPI as Figure 7 illustrates. Approximately 
91% of this MPI time is a sequence of MPI_Barrier calls in subroutine copypriv.  

Results from subroutine profiling reveal that Sphot spends 32% of its execution time 
in a subroutine called execute, which generates source particles and tracks them in a 
nested loop. Since the computational behavior varies little with problem size, we 
analyzed the computational characteristics of an eight-task job. The L1 cache hit rate is 
95% and L2 cache hit rate is 99.9%. The computation intensity is 1.7 in this case, 
indicating that this code segment is more computation-intensive rather than memory-
intensive. The number of instructions per load/store is 3.8 and the fixed-point and 
floating-point instructions constitute the 33% and 32% of the total instructions, 
respectively, due, in part, to the frequent invocation of random number generation and 
LOG functions. 

4.3.7 IRS 
As with Sphot, IRS is computation-intensive. MPI accounts for only 7% of the entire 

execution time at 64 tasks as illustrated by Figure 8. The MPI_Allreduce and MPI_Waitany 
subroutines consume 47% and 32% of total time spent in MPI, respectively, in a 64-task 
run of the program. 

Using subroutine profiling, we identified a function in which the code spends 32% of 
its execution time. The function, ratmult3, performs three-dimensional matrix 
multiplications. This function is highly optimized to maximize the cache utilization. The 
L1 data cache hit rate is 98%. The L2 cache hit rate is 99.9%. The utilization of the 
hardware floating-point units (the ratio of the number of cycles spent in hardware 
floating-point units to the total number of cycles) and the computation intensity are low: 
17% and 0.45, respectively.  

We characterize this code region as memory-bound. A strong indicator for this 
characteristic of the code is the number of instructions per load and store, which is 1.257. 
This fact implies that about 80% of all instructions in the code segment require a memory 
access. Corroborating evidence that supports this characterization can be found in the 
performance counter event PM_CMPLU_WT_LD, which provides the time (in cycles) 
during which the completion unit is waiting on load. Dividing the measured performance 
counter value by the total number of cycles spent in the function yields the value of 47%. 
This result means that almost half of the time, the completion unit was waiting on the 
completion of a memory access operation. The memory performance behavior of this 
code segment is good as shown by the high utilization of caches. However, a memory 
access operation, even if the access is performed within the L1 cache, is slower than 
register operations, hurting the overall performance significantly.  
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Figure 15: Message statistics (average message length) for AZTEC. 

4.3.8 Aztec 
In Figure 11, the time Aztec spends in MPI at 64 tasks is 16%. Among those MPI 

calls, MPI_Wait and MPI_Send consume 99% of this time. Figure 15 exhibits typical 
message-passing patterns for an iterative linear solver. Each process communicates with a 
predetermined set of processes, and the size of the messages increase as the distance 
between communicating peers becomes short. The timeline of MPI and application 
activities reveal that the code runs in a typical systolic manner: computation followed by 
communication. The sizes of messages are rather large: 52% of the messages are greater 
than 144 KB.  

For a 64-task job, Aztec spends 80% of its time in a single function in the BLAS 
library called DGEMV (from ORNL Netlib), which primarily performs matrix-vector 
multiplication, as indicated by subroutine profiling results. First, the subroutine exhibits 
very good cache performance behavior. The L1 and L2 cache hit rate is 97% and the 
number of instructions per i-cache miss is 63,124. Second, this particular function is also 
memory-bound. The average number of instructions per load/store is 1.6, implying that 
about two out of three instructions require a memory access. The measurement for the 
PM_CMPLU_WT_LD performance counter confirms this characterization. It shows that the 
completion unit remains idle for 52% of its time waiting on the completion of a load or 
store operation. Finally, the utilization of the floating- and fixed-point units is very low. 
The floating-point and fixed-point instructions represent only 20% of the total 
instructions. This is confirmed by low computation intensity of 0.45 for the function.  

5 Observations 
Table 2 summarizes our findings for factors limiting the performance and scalability 

of our workload. To be clear, we expect that virtually all of our applications would 
benefit to some extent from improvements in any of these factors. However, our intent 
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here is to identify those factors that appear to be the most critical to performance and 
scalability for individual applications. 

Six of eight applications use collective operations frequently, and our experiments 
show that as the applications scale up, these collective operations garner more execution 
time. Algorithms for operations such as broadcast and reduction are well known; 
however, our results may signal a need for more research into different algorithms and 
implementations that exploit hardware features of the interconnect.  
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SPPM X   X  X  
SMG2000 X  X  X   
SPHOT X     X  
IRS X   X X X  
MDCASK X  X     
UMT  X  X X X X 
AZTEC  X   X X  
SWEEP3D X  X   X  

Table 2: Application factors limiting performance and scalability. 

Six of eight applications could benefit from either exposing more instruction level 
parallelism to the compiler and hardware, or providing more instruction level parallelism 
in the hardware per se. Applications such as Sweep3D and sPPM have predictable 
memory access patterns at the loop level, so if the application properly exposes the 
parallelism to the compiler using software pipelining, for example, then the architecture 
could improve their performance. Sphot, whose code uses floating- and fixed-point 
hardware units heavily, can benefit from the increased instruction-level parallelism by 
adding more hardware units. In addition, memory-bound applications like IRS and Aztec, 
in which the majority of instructions require a memory access can benefit from having a 
CPU with better prefetching strategies and more registers. 

Half of the applications use MPI's point-to-point communication operations 
extensively, so improvements in point-to-point message overhead and latency would 
enhance their performance. In fact, several of the applications send relatively small 
messages, usually less than 10K bytes, which boosts the requirements for low message 
overhead and appropriate message protocols. Applications such as sPPM and UMT send 
relatively large messages in a synchronized fashion, so improvements to the interconnect 
bandwidth would most likely reduce the time these applications spend sending these large 
messages. 

Our measurements on five applications indicated that the compute intensive portions 
of these codes were spending a significant amount of time waiting on memory requests, 
including both loads and stores as demonstrated by the low IPC and high memory access 
stall times. We expect that a number of enhancements to the architecture would improve 
the performance of these applications. It is clear that our baseline measurements on ESSL 
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dgemm show that tailored software for this particular subroutine can obtain a substantial 
portion of the processor peak. However, for some operations, such as those on sparse 
matricies or unstructured meshes, the application’s efficiency will depend entirely on the 
memory subsystem’s performance. For example, both UMT and SMG2000 access non-
unit stride memory locations, so the hardware prefetching of the POWER3 cannot 
effectively prefetch data into cache as it does for sPPM.  

Other observations were application specific. As we measured UMT's performance, 
we found that the intensive use of a 64-bit, floating-point divide instruction limits the 
performance of UMT's primary computation. On our platform, this instruction has high 
latency and is not pipelined. Our cycle estimates on the straightline assembly code predict 
that improving the performance of the division operation in this loop could improve 
overall application performance by 15-25%. In another case, the Aztec application spends 
most of its time in a single, relatively small library subroutine. For this application, users 
must make certain that this subroutine is very efficient, even if it requires substantial 
effort. 

Although hardware counters provide valuable information, our investigation was 
limited by the amount of information we could gather about the application's memory 
access patterns. A binary instrumentation tool for the POWER3, such as Atom [12], 
could provide detailed information on the memory access patterns of the applications that 
would give users the necessary information to allow swift optimization of their 
applications. Other proposals that could help bridge this gap include using additional 
hardware support to track memory address information [7], using automated assembler 
modifications to track memory activity (as SIGMA [11] from IBM Research does), and 
using runtime simulation support to track memory access patterns [20]. 

6 Conclusions 
In this paper, we investigated the scalability, architectural requirements, and inherent 

behavioral characteristics of eight scalable scientific applications. We provided a 
comparative analysis of these applications by iteratively refining our analysis on each 
application's important scalability and performance characteristics with empirical 
measurements.  We gathered performance data using a range of tools that included 
subroutine profiling, MPI tracing, and accessing hardware counters. With this empirical 
data, we classified each application in terms of limiting factors, and we recommend 
architectural enhancements that would help to alleviate those major factors. We found 
that most applications would benefit from scalable collective operations, more 
instruction-level parallelism, low overhead point-to-point communication, and improved 
techniques for managing latency in the memory hierarchy. Also, we find specific 
performance issues that were caused by the application’s inherent algorithmic 
requirements. For example, UMT's intensive use of a 64-bit, floating-point divide 
instruction, which has high latency and is not pipelined on the POWER3, limits the 
performance of UMT's primary computation. 

We are continuing to investigate these applications with simulation of the processor, 
memory architecture, and interconnect to understand the tradeoffs among the many 
design dimensions of architectures. 
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